
Towards Efficient Support for Parallel I/O in Java HPC

Ammar Ahmad Awan1, Muhammad Sohaib Ayub2, Aamir Shafi2, Sungyoung Lee1

1Department of Computer Engineering, Kyung Hee University, South Korea
{ammar, sylee}@oslab.khu.ac.kr

2SEECS, National University of Sciences and Technology, Pakistan
{sohaib.ayub, aamir.shafi}@seecs.edu.pk

Abstract— Modern HPC applications put forward significant
I/O requirements. To deal with them, MPI provides the MPI-
IO API for parallel file access. ROMIO library implements
MPI-IO and provides efficient support for parallel I/O in C
and Fortran based applications. On the other hand, Java based
MPI-like libraries such as MPJ Express and F-MPJ have
emerged but they lack parallel I/O support. Little research has
been done to provide Java based ROMIO-like libraries due to
the non-availability of MPI-IO-like API for the Java language.
In this paper, we take the first step towards the development of
parallel I/O API in Java by evaluating the newly introduced
Java NIO API versus the legacy Java I/O API. We propose two
simple approaches for performing parallel file I/O using NIO
and evaluate them on two different computational platforms.
The implementation of proposed approaches exploits the view
buffers concept of NIO API to perform efficient array based
file I/O operations from multiple processes. We report
encouraging speedups and suggest that design of a parallel I/O
API in Java should be based on the NIO API.

Keywords--Performance Evaluation; Parallel I/O in Java;
MPJ Express; MPI-I/O;

I. INTRODUCTION
 Message Passing Interface (MPI) has become the de

facto standard for writing parallel applications that run on
distributed memory machines. MPI provides language
bindings for C and Fortran, which continue to be the
mainstream High Performance Computing (HPC) languages.
Large-scale HPC applications put forward significant I/O
requirements, which are classically considered a major
bottleneck in the performance of parallel applications [19].
MPI deals with these requirements by providing the MPI-IO
API [4]. ROMIO [5] library fully implements the MPI-IO
API and provides efficient parallel I/O for C and Fortran
based applications. Popular implementations of MPI
including MPICH-2 [23] and Open MPI [24] contain the
ROMIO library.

On the other hand, Java has been adopted as an
alternative HPC language. Significant interest in developing
messaging libraries for Java led to the formation of the Java
Grande Forum [1], which developed the mpiJava 1.2 API
specification [2] based on the MPI standard (version 1.2).
This resulted in several implementations of the mpiJava API
in the form of MPI-like Java libraries such as MPJ Express
[3], MPJ/Ibis [22] and F-MPJ [20]. The main problem is that
all of these Java libraries lack parallel I/O support. Little
research has been done to develop ROMIO-like libraries for
Java. The reason for unavailability of parallel I/O support in

existing Java libraries is that mpiJava specifications do not
contain an MPI-IO equivalent. We believe that developing
such an API for Java is necessary to guide the development
of Java based parallel I/O libraries. In this paper, we take the
first step towards building a Java parallel I/O API by
evaluating Java I/O and NIO APIs. We surveyed existing
studies and found that very few researchers have focused on
evaluating Java’s I/O capabilities in this particular context.

The main contribution of this paper is that we propose
parallel file I/O approaches based on view buffers concept
of Java NIO API and evaluate them against existing
approaches in Java I/O API across two different parallel
computing platforms. To date, there has been relatively little
research focused on evaluation of Java NIO in the context of
parallel file I/O support for Java HPC libraries. Our
performance evaluation suggests that the design of Java
parallel I/O API should be based on Java NIO API as it
natively provides the most efficient parallel file I/O methods.

The rest of the paper is organized as follows. In Section
II, we discuss I/O requirements in HPC applications. In
Section III, we provide a review of the Java NIO API. In
Section IV, we describe the proposed approaches to parallel
file I/O using Java NIO. Section V contains explanation of
the computational platforms, benchmarking methodology
and the analysis of results. Section VI contains the related
work and Section VII concludes this paper.

II. I/O REQUIREMENTS IN HPC APPLICATIONS
Modern HPC applications contain large data structures

distributed across multiple processes. These data structures
are usually arrays of primitive datatypes that are read from
and written to files. C based applications can use type
casting to easily convert arrays or even portion of arrays of
different datatypes to byte arrays. Multidimensional arrays
in C can easily be treated as single dimensional arrays. C
applications can improve performance by use native file
system calls and hints to the file system e.g. O_DIRECT on
Network File System (NFS) to turn off client-side data
caching. On the other hand, Java lacks these facilities and its
I/O interface is potentially much more restrictive than C.
Java applications cannot directly pass hints to the file
system like the earlier mentioned O_DIRECT. Moreover,
Java I/O API doesn't support array based (bulk) read/write
operations on files for primitive datatypes other than bytes.
Real world applications however, do need to use integer,
floating point or other primitive datatype arrays. Java NIO

2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4879-1/12 $26.00 © 2012 IEEE

DOI 10.1109/PDCAT.2012.131

137

does support array based read/write operations but through
an indirect view buffer approach. We will elaborate and
discuss how the view buffers approach can be used to
perform array (or bulk) I/O operations in Section IV. In this
paper, we are mainly investigating the problem of array
based read/write operations on a single file from multiple
Java processes (and threads). This is an important research
area in the context of developing a parallel I/O API for Java.

III. REVIEW OF JAVA NIO API
To fully understand the issues related to parallel file I/O

in Java, it is necessary to briefly review the Java NIO API.
The Java I/O API was primarily based on streams of data
which operate on bytes whereas the Java NIO API is based
on channels which operate on blocks of data. Review of Java
I/O API can be studied from [9]. The following sub-sections
discuss the class hierarchy shown in Figure 1.

A. Buffer class
The java.nio.Buffer class is the foundation of Java

NIO API. A Buffer object acts as a container of data for a
specific primitive data-type. It has three important
parameters; position, limit and capacity. It is the base
class for the primitive data-type buffers. Example of a
primitive data-type buffer is ByteBuffer for the byte data-
type.

Figure 1. Hierarchy of the NIO classes relevant to our discussion

B. ByteBuffer class
ByteBuffer class extends the Buffer class. All ByteBuffer
objects are based on a backing byte array. The method
below is used for creating ByteBuffer objects.

public static ByteBuffer allocate(int capacity)

ByteBuffer object’s position is controlled in byte offsets.
In many practical applications we want to use primitive
data-type offsets and Java supports this by providing buffers

of primitive data-types. IntBuffer has been discussed as an
example of primitive data-type buffers. All other types have
similar properties so they are not discussed individually.

C. IntBuffer class
IntBuffer objects like ByteBuffer objects are backed by
an integer array. This helps to change position of the
IntBuffer using integer offsets. The method to create an
IntBuffer is:

public static IntBuffer allocate(int capacity)

We can call asIntBuffer() method on a ByteBuffer object
which is useful for parallel read/write operations as
discussed further in Section IV.

D. FileChannel class
The FileChannel class resides in the java.nio.channels
package. The FileChannel object can be created for a file
by invoking open() methods provided by the class.
FileChannel objects are thread safe and can be used by
multiple concurrent threads. FileChannel can perform I/O
operations based on a ByteBuffer object only. The
signatures for performing read and write operations on a file
are:

public int read(ByteBuffer destination)
public int write(ByteBuffer source)

The position of the FileChannel object is important for
parallel reads and writes and can be set by calling
position(long newPosition) method.

E. FileChannel.MapMode class
FileChannel is enclosing class of FileChannel.MapMode.

The FileChannel.MapMode is type-safe enumeration for file-
mapping modes. Java provides support for memory mapped
I/O, which is a technique to map regions of file into the main
memory. I/O operations performed on mapped regions of
memory are faster than on physical disk. In Java, memory
mapping is recommended for large file sizes only [15]. The
mapped region of a file is reflected as an in-memory
MappedByteBuffer object which can be acquired by calling
the following method of the FileChannel class.

MappedByteBuffer map(FileChannel.MapMode mode,
 long position,long size)

The changes done to mapped buffer object are reflected
in the file so there is no need for calling the usual write()
and read() methods of a FileChannel object.

IV. APPROACHES TO PARALLEL FILE I/O IN JAVA
We propose two new parallel file I/O approaches based

on the Java NIO API. We will refer them as:

� Using FileChannel with View Buffer
� Using FileChannel in Mapped Mode

138

We observed that Java NIO API can facilitate bulk

(array) I/O operations on a file while the legacy Java I/O API
had no such support. Bulk I/O operations can be achieved by
using methods defined by ByteBuffer class that create views
of a given ByteBuffer object. These methods are of the form
as<<type>>Buffer() where <<type>> includes all primitive
data-types other than bytes. We are using asIntBuffer() for
int data-type in our discussion but the same holds true for
all other primitive data-types. A view buffer is simply
another buffer whose content is backed by the byte buffer.
We exploit this functionality, in our proposed approaches, to
perform memory operations on the view buffer and use the
backing ByteBuffer object for I/O operations on a file using
the FileChannel object. In addition to the proposed
approaches, we describe two other approaches for parallel
file I/O (listed below) based on the legacy Java I/O API
originally discussed in [9].

� Using RandomAccessFile
� Using BulkRandomAccessFile

 The details and pseudo code of existing and proposed

parallel file I/O approaches is discussed in the upcoming
sub-sections.

A. Using FileChannel with View Buffer
In this approach, we are exploiting the view buffer

facility provided by the ByteBuffer class. The pseudo code
for this approach is written in Figure 2. Each process creates
an integer array with length equal to count. Each process
creates a FileChannel object and allocates a buf object of
size myInts*4 where myInts contains the count of integers
for each process calculated as count / numProcs. Next, each
process connects buf object to the ibuf object and then puts
myInts integers from the int_array to the ibuf object.
Each process then seeks to the correct file position, locks the
processes’ specific portion of the file, writes buf object to
the file, releases the lock and then pushes the data and
metadata changes to the file system. We have used the
FileLock class to lock the process specific portion of the file
before writing to it. FileLock class uses fcntl() locks on
Unix file systems and is necessary for correct behavior in
case of parallel writes on NFS. File locks are held on behalf
of the entire Java virtual machine and are not suitable for
controlling access to a file by multiple threads within the
same virtual machine. We note that this approach avoids the
overhead of explicit conversion from integers to bytes which
can become a significant bottleneck for arrays of large sizes.

 1 // each process executes the following code
 2
 3 int int_array[] = new int[count];
 4 int numProcs = MPI.COMM_WORLD.Size();
 5 int rank = MPI.COMM_WORLD.Rank();
 6
 7 FileChannel fc =
 8 FileChannel.open(Paths.get(fname,options);
 9

10 ByteBuffer buf = ByteBuffer.allocate(myInts*4);
11
12 IntBuffer ibuf = buf.asIntBuffer();
13
14 long myPos = count/numProcs * rank;
15 long myInts = count/numProcs;
16
17 ibuf.put(int_array, myPos, myInts);
18
19 long fSize = myInts*4;
20 long fPos = myPos*4;
21
22 fc.position(fPos);
23
24 // lock the file for correct parallel writes
25
26 FileLock fl = fc.tryLock(fPos, fSize, false);
27
28 fc.write(buf);
29
30 fl.release();
31
32 fc.force(true);
33

Figure 2. Pseudo-code for Using FileChannel with View Buffer approach

B. Using FileChannel in Mapped Mode
Figure 3 contains the pseudo code for this approach.

Each process creates the array and its own FileChannel
object. Each process creates a MappedByteBuffer object
based on specific region of the array. Next, each process
connects its ibuf object to mbbuf object and puts myInts
integers from int_array to the ibuf object. Unlike previous
approach, fc.write() method is not explicitly called, as the
changes to the ibuf object reflect to the mbbuf object and to
the file as well. We note that we are not using explicit
locking here because memory mapped portions are locked
by the JVM itself. The standard JDK documentation
suggests that locking and mapping should not be used
simultaneously as it might fail on certain systems.

 1 // each process executes the following code
 2
 3 int int_array[] = new int[count];
 4 int numProcs = MPI.COMM_WORLD.Size();
 5 int rank = MPI.COMM_WORLD.Rank();
 6
 7 FileChannel fc =
 8 FileChannel.open(Paths.get(fname,options);
 9
10 long myPos = count/numProcs * rank;
11 long myInts = count/numProcs;
12
13 MappedByteBuffer mbbuf =
14 fc.map(MapMode.READ_WRITE, myPos*4, myInts*4);
15
16 IntBuffer ibuf = mbbuf.asIntBuffer();
17
18 // lock the file for correct parallel writes
19
20 FileLock fl = fc.tryLock(fPos, fSize, false);
21
22 ibuf.put(int_array, myPos, myInts);
23
24 // We do not use fc.write() here as the changes

139

25 // done to buffer are reflected in file.
26
27 fl.release();
28
29 mbbuf.force();
30

Figure 3. Pesudo code for Using FileChannel in Mapped Mode approach

C. Using RandomAccessFile
The RandomAccessFile resides alone in the java.io

hierarchy and duplicates the functionality of InputStream
and OutputStream class hierarchy. RandomAccessFile class
provides reading and writing of primitive data-types by
implementing DataInput and DataOutput interfaces. The
example of one such method for writing is writeInt(int
value) and reading is readInt(). But there exist no methods
in java.io hierarchy that directly read/write arrays of
primitive data types. In addition, it provides a method for
skipping (or seeking) bytes that is essential for parallel reads
and writes. The method’s signature is:

public void seek(long position) throws IOException

We originally planned to provide the pseudo-code and
benchmark for this approach but our preliminary evaluation
showed that this approach is extremely inefficient, so we
omitted the benchmarks and results for this approach.

D. Using BulkRandomAccessFile
BulkRandomAccessFile is a custom built Java class

which duplicates the functionality of RandomAccessFile
class of Java. BulkRandomAccessFile is not part of the
standard JDK but was presented in [25] and can easily be
used in Java programs by including its package hierarchy.
The authors presented the extensions for Java and Titanium
language but we are discussing only Java version in this
paper. The BulkRandomAccessFile class provides new
methods for reading and writing arrays of primitive data-
types. These methods claim to perform significantly better
than the RandomAccessFile class methods for writing
primitive data-types [9],[25]. These methods are overloaded
for all primitive data-types but we are only using the int
version in this paper. The signature for reading and writing
integers is:

void readArray(int[] array, int offset, int count)
void writeArray(int[] array,int offset, int count)

The pseudo-code for this approach is shown in Figure 4.

Each process creates an integer array with length equal to
count and a BulkRandomAccessFile object. Next, each
process seeks to the correct position, acquires the associated
FileChannel object, locks the portion of file using this
channel, writes myInts integers to the file using the bulk
write() method and finally releases the lock. We have
used ”rws” as the access mode for opening the
BulkRandomAccessFile, as its effect is equivalent to the
fc.force(true) and mbbuf.force() method, i.e. to force
both the data as well as metadata changes to the file system.
It is interesting to note that legacy Java I/O API does not

directly provide locking capabilities but it can be used by
acquiring the associated FileChannel object and using locks
on it.

 1 // each process executes the following code
 2
 3 int int_array[] = new int[count];
 4 int numProcs = MPI.COMM_WORLD.Size();
 5 int rank = MPI.COMM_WORLD.Rank();
 6
 7 BulkRandomAccessFile braf =
 8 new BulkRandomAccessFile(filename,”rws”);
 9
10 long myPos = count/numProcs * rank;
11 long myInts = count/numProcs;
12
13 long fSize = myInts*4;
14 long fPos = myPos*4;
15
16 braf.seek(myPos);
17
18 FileChannel fc = braf.getChannel();
19
20 FileLock fl = fc.tryLock(fPos, fSize, false);
21
22 braf.write(int_array, myPos, myInts);
23
24 fl.release();
25

Figure 4. Pseudo code for Using BulkRandomAccessFile approach

V. PERFORMANCE EVALUATION
We wrote two different versions of our benchmarking

code. The first version uses Java threads for evaluating
performance on a shared memory machine, while the second
uses MPJ Express processes for evaluating performance on a
distributed memory machine.

A. Computational Platforms
The distributed memory machine we have used, is an HP

ProLiant DL160SE G6 Server based Cluster comprising of
34 nodes. Each node has an Intel Xeon processor providing 8
physical cores per node and 24GB of memory per node. The
cluster has a total memory of 816 GB and is based on RHEL
5.5 operating system. The head node of the cluster is directly
connected to the SAN storage (22TB raw capacity) using
Fibre Channel host bus adapter (HBA) and switch. All other
nodes connect to the head node via the QDR Infiniband
network with a theoretical peak bandwidth of 40Gbps.
“Infiniband over IP” has been used for data sharing. The
storage has been mounted using the popular NFSv3 but we
plan to upgrade the cluster to use a modern parallel file
system such as PVFS2 or Lustre. Each node has a Gigabit
Ethernet card to connect to the Gig-E network as well but is
not used for accessing the file system. Each node contains a
physical disk drive, which uses the ext3 file system.

The shared memory machine is just one node of the
distributed memory cluster, with a total of 8 physical cores
(16 logical cores as each core has two threads).

140

B. Analysis of Results
We have used three different configurations for our

evaluation. All configurations use a shared array of 256
million integers accumulating to total data size of 1 GB.
Each thread or process performs I/O operations on disjoint
locations in the file. We execute these operations several
times and use the average value of the time to generate
performance graphs. The bandwidth shown in the graphs is
the aggregate bandwidth calculated by diving data-size over
time where time is the sum of time taken by each thread
divided by number of threads. The consistency of file’s data
and metadata (file attributes) are important when multiple
processes read and write simultaneously to a single file. In
our experiments, we are executing the processes on a
distributed memory machine, which connects to a Storage
Area Network (SAN) server. This storage is mounted using
the Sun NFS version 3 using the “-noac” option to turn off
attribute caching. This poses a performance penalty but is
necessary for consistency of metadata. To maintain data
consistency when reading from and writing to a file by
multiple processes, locking is necessary on NFS and fcntl()
lock is the default mechanism to guarantee correct behavior.
The alternate option to maintain data consistency is by
disabling client-side data caching by using O_DIRECT flag
when opening a file. This facility however is not available
for Java applications so we are using the FileLock Java class
which internally uses fcntl() locks on Unix file systems.
We first lock the Process’s specific portion of the file and
write its portion of array to the file and then unlock that
portion of the file. Each process does this to ensure
correctness of write operation. The read operation follows a
similar approach and is done after the write operation has
fully completed. We are not considering the cases when
processes read/write simultaneously to a file or read/write to
overlapping regions of a file to avoid the problems of
consistency and atomicity. These cases are beyond the scope
of this paper. The three configurations mentioned previously
are explained below along with a discussion related to
respective graphs for each configuration.

Threads based I/O on local disk: This configuration uses
Java threads. Each thread seeks to an appropriate distinct
location in the file and writes its own chunk of shared integer
array to the shared file. A similar approach is followed for
reading the integers from the file to the array. The file resides
on the local disk drive (ext3 file system) of the shared
memory machine. Figure 5 shows the results for this
configuration. The read operation sustained a maximum
aggregate bandwidth of approximately 10 GB/sec. for file
channel with view buffer approach. Exactly same trend and
result was observed when the shared file was placed on NFS
storage. Bulk random access file and file channel in mapped
mode performed comparable for both the configurations,
while file channel in mapped mode started to perform better
when the file was placed on NFS storage. This approach
achieved a maximum bandwidth of 6 GB/seconds. The write
operation for shared file on disk could only achieve a

maximum bandwidth of 94 MB/sec. for all the three
approaches.

Threads based I/O on NFS storage: This configuration is
similar to the previous one except that we don’t use the local
disk of the machine, instead we place the shared file on a
network attached storage mounted using NFS. Figure 6
shows results for this configuration. We noticed that write
operation for file channel in mapped mode performed
inefficiently when file was moved to NFS storage. The
reasons for this can be locking (mapping) mechanisms used
by Java, for memory-mapped regions of a file on NFS,
accessed by multiple threads. Overall bandwidth increased
significantly for file channel with view buffer and bulk
random access file approaches, both achieved a maximum
write bandwidth of approx. 250 MB/sec. up from 94 MB/sec.
The increase in speed is due to the fact that SAN storage
attached to the machine has higher bandwidth than local disk.

MPJ processes based I/O on NFS storage: This
configuration uses MPJ Express processes which are
executed on a distributed memory cluster. These are remote
processes and each process performs read/write operations
on a shared file. The processes seek to the appropriate file
location and perform read/write operations on it. The file
resides on the NFS storage. Figure 7 shows the results for
this configuration. We note that the graphs shown in Figure 5
and 6 are for threads where we don’t lock the file before
reading or writing whereas graphs in Figure 7 are for
processes where we implement locking using the FileLock
class. Hence, the graphs shall not be compared to each other
as they are somewhat unrelated in terms of configuration.
Write performance improved as we increased the number of
processes from 2 to 8 which shows that speedups are
possible with this approach. On the contrary, the
performance decreased as we increased number of processes
beyond 8 and the reason for this drop is the contention for
resources and the under optimized cluster setup which makes
available only a single path from the NFS server to the
storage system. We plan to upgrade this configuration along
with installation of the parallel file systems like PVFS2 and
Lustre. Read performance had similar results except that
maximum bandwidth achieved was approaching 500 MB per
second for file channel in mapped mode with 4 processes.
Overall read bandwidth was higher than write bandwidth but
did not scale well with increasing number of processes.

The most stable performance across all configurations
and tests was achieved by file channel with view buffers
approach. Bulk random access file approach performed
comparable. It is not available, however, as part of standard
JDK and needs to be downloaded from a third party. File
channel in mapped mode had mixed results and we plan to
investigate this approach further in the extended version of
this work.

141

Figure 5. Performance of Tests using Java threads for parallel access to a shared file residing on local disk of the Shared Memory Machine

Figure 6. Performance of Tests using Java threads for parallel access to a shared file residing on NFS storage attached to the Shared Memory Machine

Figure 7. Performance of Tests using MPJ Express processes for parallel access to shared file residing on NFS storage of the Distributed Memory Machine

VI. RELATED WORK
The most pertinent and related research was presented in

[26] and [9] which evaluate the support for array based
(bulk) I/O operations in Java. The work introduced bulk I/O
operations for primitive datatypes other than bytes, which
were not available in Java I/O API, in the form of JNI
extensions originally presented in [25] and available from
[16]. The C counterparts of this research include parallel I/O

libraries like ROMIO [5], parallel HDF5 [6], Parallel I/O
(PIO) [7], and parallel netCDF [8].

Table I provides a summary of the Java based parallel
I/O libraries discussed in [10, 11, 12, 13, 14, 21 and 28]. The
important features that are necessary for a high quality
parallel I/O library include:
� Support for parallel I/O
� Support for inter-connects like Infiniband and Myrinet
� MPI-IO compliance
� Availability of the software and performance studies

142

TABLE I. EVALUATION OF JAVA PARALLEL I/O LIBRARIES

Java Parallel I/O
Software

A
va

ila
bl

e
fo

r
D

ow
nl

oa
d

Su
pp

or
ts

 P
ar

al
le

l I
/O

M
PI

-I
O

 C
om

pl
ia

nt

U
se

d
in

 3
rd

 P
ar

ty
 S

of
tw

ar
e

In
fin

ib
an

d
Su

pp
or

t

M
yr

in
et

 S
up

po
rt

Pe
rf

or
m

an
ce

 S
tu

di
es

 A
va

ila
bl

e

JavaSeis �� �� � � � � �

Java NetCDF �� � - �� � � �

jExpand � �� � � � � �

Parallel Java (PJ) �� � � � � � �
AgentTeamWork MPI-
IO like Java Library � �� � � � � �

VII. CONCLUSIONS AND FUTURE WORK
In this paper we addressed an important issue of parallel

file I/O in Java. Java has two I/O APIs; a legacy Java I/O
API which was previously benchmarked, and Java NIO API
which has not been evaluated in the HPC context and is
benchmarked in this paper. We observed that original Java
I/O API provides poor file I/O performance, its extensions
provide significant performance gains, and our proposed
Java NIO approaches performed even better with increasing
number of processes. In order to compete as a mainstream
HPC language, Java based HPC libraries need to be
equipped with efficient parallel I/O support. This can only be
achieved if a standard MPI-IO like parallel file I/O API for
Java be developed. Based on our performance evaluation,
we can suggest that the design and implementation of a Java
parallel I/O API shall be based on the Java NIO API as it
natively provides the most efficient parallel file I/O methods.
We plan to extend this work by evaluating Java NIO on
popular parallel file systems like PVFS2 and Lustre, as well
as developing and implementing an MPI-IO like Java API.

ACKNOWLEDGMENT
This research was supported by the MKE (The Ministry

of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2012-(H0301-12-2001)) and a grant from
the NIPA in 2012. (Global IT Talents Program).

REFERENCES
[1] The Java Grande Forum, http://www.javagrande.org
[2] Carpenter, Bryan; Fox, Geoffrey; Ko, Sung-Hoon; and Lim, Sang,

"mpiJava 1.2: API Specification" (1999). Northeast Parallel
Architecture Center. Paper 66. http://surface.syr.edu/npac/66

[3] MPJ Express Project, http://www.mpj-express.org/
[4] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2:

Advanced Features of the Message-Passing Interface. MIT Press,
Cambridge, MA, 1999.

[5] ROMIO: A High-Performance, Portable MPI-IO Implementation,
http://www.mcs.anl.gov/research/projects/romio/

[6] Parallel HDF5 Project, http://www.hdfgroup.org/HDF5/PHDF5/
[7] Parallel I/O (PIO) Library,

http://web.ncar.teragrid.org/~dennis/pio_doc/html/
[8] Parallel-NetCDF, http://trac.mcs.anl.gov/projects/parallel-netcdf
[9] Dan Bonachea, Phillip Dickens, and Rajeev Thakur, “High-

performance file I/O in Java: Existing approaches and bulk I/O
extensions,” Concurrency and Computation: Practice and Experience,
vol. 13, Aug. 2001, pp. 713–736.

[10] Omonbek Salaev, Parallel Datastore System for Parallel Java, A
Capstone Project Final Report, January 2010,
http://www.cs.rit.edu/~ark/students/obs8529/report.pdf

[11] Joshua Phillips, Munehiro Fukuda, Jumpei Miyauchi, "A Java
Implementation of MPI-I/O-Oriented Random Access File Class in
AgentTeamwork Grid Computing Middleware," Proc. IEEE Pacific
Rim Conference on Communications, Computers and Signal
Processing (PacRim 07), Aug. 2007, pp.149-152.

[12] Jose M. Perez, L. M. Sanchez, Felix Garcia, Alejandro Calderon,
Jesus Carreter, "High performance Java input/output for
heterogeneous distributed computing," Proc. 10th IEEE Symp. on
Computers and Communications (ISCC 2005), June 2005, pp. 969-
974.

[13] The Java Net-CDF library,
http://www.unidata.ucar.edu/software/netcdf-java

[14] JavaSeis Project,
http://sourceforge.net/apps/mediawiki/javaseis/index.php?title=Main_
Page

[15] Java™ Platform, Standard Edition 7 API Specification,
http://docs.oracle.com/javase/7/docs/api/

[16] Bulk I/O Extensions to Java,
http://www.eecs.berkeley.edu/~bonachea/java/index.html

[17] Titanium Project, http://titanium.cs.berkeley.edu/
[18] CPU-Z tool, http://www.cpuid.com/softwares/cpu-z.html
[19] Rajeev Thakur, Ewing Lusk, and William Gropp, "I/O in Parallel

Applications: The Weakest Link," The Int'l Journal of High
Performance Computing Applications, vol. 12(4), Winter 1998, pp.
389-395.

[20] Guillermo L. Taboada, Juan Touriño, Ramon Doallo, “F-MPJ:
scalable Java message-passing communications on parallel systems,”
Journal of Supercomputing, vol. 60(1), 2012, pp. 117-140.

[21] Tsujita, Y, "MPI-I/O operations to a remote computer using Java,"
Proc. 11th International Conference on Parallel and Distributed
Systems, July 2005. pp. 694-698, doi: 10.1109/ICPADS.2005.20

[22] Markus Bornemann, Rob V. van Nieuwpoort, and Thilo Kielmann,
“MPJ/Ibis: a flexible and efficient message passing platform for Java,”
Proc. of 12th European PVM/MPI Users' Group Meeting, Sept. 2005,
pp. 217-224.

[23] MPICH2 Project, http://www.mcs.anl.gov/research/projects/mpich2/
[24] Edgar Gabriel et al, “Open MPI: Goals, Concept, and Design of a

Next Generation MPI Implementation,” Proc. Euro PVM/MPI 2004,
Sept. 2004, pp. 97-104.

[25] Bonachea, Dan. "Bulk File I/O Extensions to Java," Proc. of the ACM
Java Grande Conference, June 2000, pp. 16-25.

[26] Phillip Dickens and Rajeev Thakur, "An Evaluation of Java's I/O
Capabilities for High-Performance Computing," Proc. of the ACM
Java Grande Conference, June 2000, pp. 26-35.

[27] Alan Kaminsky, “Parallel Java: A unified API for shared memory and
cluster parallel programming in 100% Java,” Proc. 21st IEEE
International Parallel and Distributed Processing Symposium (IPDPS
2007), March 2007, pp. 1-8.

[28] Félix Garcia-Carballeira, Alejandro Calderon, Jesus Carretero, Javier
Fernandez, and Jose M. Perez, “The Design of the Expand Parallel
File System,” International Journal of High Performance Computing
Applications, vol. 17(1), Feb. 2003, pp. 21-37.

143

